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Abstract

This paper presents a new analysis for the orthogonal matching pursuit (OMP) algorithm.
It is shown that if the restricted isometry property (RIP) is satisfied at sparsity level O(k̄),
then OMP can recover a k̄-sparse signal in 2-norm. For compressed sensing applications, this
result implies that in order to uniformly recover a k̄-sparse signal in Rd, only O(k̄ ln d) random
projections are needed. This analysis improves earlier results on OMP that depend on stronger
conditions such as mutual incoherence that can only be satisfied with Ω(k̄2 ln d) random projec-
tions.

1 Introduction

Consider a signal x̄ ∈ Rd, and we observe its linear transformation plus noise as:

y = Ax̄ + noise,

where A is an n× d matrix. If we define an objective function

Q(x) = ‖Ax− y‖22, (1)

then x̄ approximately minimizes Q(x).
If d > n, then the solution of (1) is not unique. In order to recover x̄ based on optimizing

(1), additional assumptions on x̄ is necessary. We are specifically interested in the case where x̄ is
sparse. That is ‖x̄‖0 � n, where

‖x‖0 = |supp(x)|, supp(x) = {j : xj 6= 0}.

It is known that under appropriate conditions, it is possible to recovery x̄ by solving (1) with sparsity
constraint as follows:

min
x∈Rd

Q(x) subject to ‖x‖0 ≤ k. (2)

However, this optimization problem is generally NP-hard. Therefore one seeks computationally
efficient algorithms that can approximately solve (2), with the goal of recovering sparse signal x̄.
This paper considers the popular orthogonal matching pursuit algorithm (OMP), which has been
widely used for this purpose. We are specifically interested in two issues: the performance of OMP
in terms of optimizing Q(x) and the performance of OMP in terms of recovering the sparse signal
x̄.
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2 Main Result

Our analysis considers a more general objective function Q(x) that not necessarily takes the
quadratic form in (1). However, we assume that Q(x) is convex. For such a general convex ob-
jective function, we consider the fully (or totally) corrective greedy algorithm in Figure 1, which
was analyzed in [6]. We will refine the analysis in this paper in order to show that the algorithm
works under the RIP condition. This algorithm is a directly generalization of OMP which has been
traditionally considered only for the quadratic objective function in (1). The algorithm has been
known in the machine learning community as a version of boosting [9], and has also been proposed
recently in the signal processing community [1]. In order to use notation consistent with the sparse
recovery literature, in the current paper, we still refer to this more general algorithm as OMP even
though it applies to objective functions other than (1).

Input: Q(x) defined on Rd, and initial feature set F (0) ⊂ {1, . . . , d}.
Output: x(k)

let x(0) = arg minx∈Rd Q(x) subject to supp(x) ⊂ F (0)

(default choice is F (0) = ∅ with x(0) = 0)
for k = 1, 2, . . .

let j = arg maxi |∇Q(x(k−1))i|
let F (k) = {j} ∪ F (k−1)

let x(k) = arg minx∈Rd Q(x) subject to supp(x) ⊂ F (k)

end

Figure 1: Fully Corrective Greedy Boosting Algorithm (OMP)

The general problem of optimization under sparsity constraint is NP hard. In order to alle-
viate the difficulty, we consider approximate optimization under the restricted strong convexity
assumption introduced below.

Definition 2.1 (Restricted Strong Convexity Constants) Given any s ≥ 0, define restricted
strong convexity constants ρ−(s) and ρ+(s) as follows: for all ‖x− x′‖0 ≤ s, we require

ρ−(s)‖x− x′‖22 ≤ Q(x′)−Q(x)−∇Q(x)>(x′ − x) ≤ ρ+(s)‖x− x′‖22.

If the objective function takes the quadratic form (1), then the above definition becomes sparse
eigenvalues of A>A, which is used in defining the restricted isometry property (RIP) [2].

In order to recover the target x̄, we have to assume that x̄ is sparse and approximately optimizes
Q(x). If a target x̄ is a global optimal solution, then ∇Q(x̄) = 0. However, this paper deals with
sparse approximate optimal solution, where ∇Q(x̄) ≈ 0. In particular, we introduce the following
definition, which is convenient to apply.

Definition 2.2 (Restricted Gradient Optimal Constatnt) Given x̄ ∈ Rd and s > 0, we de-
fine the restricted gradient optimal constant δs(x̄) as:

|∇Q(x̄)>u| ≤ δs(x̄)‖u‖2

for all u ∈ Rd such that ‖u‖0 ≤ s.
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Proposition 2.1 We have δs(x̄) ≤
√
s‖∇Q(x̄)‖∞ and δs(x̄) ≤ ‖∇Q(x̄)‖2. Moreover, if Q(x̄) ≤

inf‖x‖0≤‖x̄‖0+sQ(x) + ε, then
δs(x̄) ≤ 2

√
ρ+(s)ε.

Proof The first two inequalities are straight-forward. For the third inequality, we note that for
‖u‖0 ≤ s:

inf
‖x‖0≤‖x̄‖0+s

Q(x) ≤ inf
η
Q(x̄ + ηu)

≤ inf
η

[Q(x̄) + η∇Q(x̄)>u + ρ+(s)η2‖u‖22]

=Q(x̄)− |∇Q(x̄)>u|2/(4ρ+(s)‖u‖22).

The result follows by rearranging the above inequality.

The following theorem is the main result of this paper, which shows that OMP can approximately
recover a sparse signal x̄ in 2-norm if a certain condition on the strong convexity constants hold.

Theorem 2.1 Consider the OMP algorithm. Let x̄ ∈ Rd and F̄ = supp(x̄). If there exists s such
that

s ≥ |F̄ ∪ F (0)|+ 4|F̄ − F (0)|(ρ+(1)/ρ−(s)) ln(20ρ+(|F̄ − F (0)|)/ρ−(s)),

then when k = s− |F̄ ∪ F (0)|, we have

Q(x(k)) ≤ Q(x̄) + 2.5δs(x̄)2/ρ−(s)

and
‖x(k) − x̄‖2 ≤

√
6δs(x̄)/ρ−(s).

Proof The detailed proof relies on a number of technical lemmas that are left to the appendix.
The first inequality of the theorem is a direct consequence of Lemma A.5. The second inequality

is a consequence of the first inequality and Lemma A.2:

ρ−(s)‖x(k) − x̄‖22 ≤ 2
[
Q(x(k))−Q(x̄)

]
+ δs(x̄)2/ρ−(s) ≤ 6δs(x̄)2/ρ−(s).

This implies the second inequality.

The following result gives a simpler interpretation of the above theorem, where it is easy to
check that the condition of the theorem is satisfied. For the quadratic objective (1), the condition
ρ+(‖x̄‖0) ≤ 2ρ−(31‖x̄‖0) is referred to as RIP in [2].

Corollary 2.1 Consider the OMP algorithm with F (0) = ∅. Let x̄ ∈ Rd. If the RIP condition
ρ+(‖x̄‖0) ≤ 2ρ−(31‖x̄‖0) holds, then when k = 30‖x̄‖0, we have

Q(x(k)) ≤ Q(x̄) + 2.5δs(x̄)2/ρ−(s)

and
‖x(k) − x̄‖2 ≤

√
6δs(x̄)/ρ−(s),

where s = 31‖x̄‖0.
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For quadratic objective, a simple instantiation of δs(x̄) using Proposition 2.1 leads to the fol-
lowing sparse recovery result that is relatively simple to interpret.

Corollary 2.2 If Q(x) = ‖Ax− y‖22. Consider the OMP algorithm with F (0) = ∅. Let x̄ ∈ Rd. If
the RIP condition ρ+(‖x̄‖0) ≤ 2ρ−(31‖x̄‖0) holds, then when k = 30‖x̄‖0, we have

‖x(k) − x̄‖2 ≤ 2
√

6ρ+(s)1/2‖Ax̄− y‖2/ρ−(s),

where s = 31‖x̄‖0.

3 Discussion

In this paper we proved a new result for the orthogonal matching pursuit algorithm. It is shown
that if the restricted isometry property (RIP) is satisfied at sparsity level O(k̄), then OMP can
recover a k̄-sparse signal in 2-norm. For compressed sensing applications, this result implies that
in order to uniformly recover a k̄-sparse signal in Rd, only n = O(k̄ ln d) random projections are
needed [2].

Our result is stronger than previous results for OMP that relied on different conditions. For
example, [7] considered the problem of recovering the support set of a sparse signal under a stronger
condition (also see [11]). A similar analysis was employed in [8], where it was shown that for any fixed
sparse signal x̄ with k̄ = ‖x̄‖0, OMP can recover the signal with large probability using O(k̄ ln d)
measurements. However, this result is not uniform with respect to all k̄-sparse signals x̄ (that is, for
any set of random projections, there exist k̄-sparsity signals that fail the analysis). In comparison,
the RIP condition holds uniformly by definition, and hence our result applies uniformly to all k̄-
sparse signals. Although some previous results apply uniformly to all k̄-sparse signals, such as those
in [3], they depend on the stronger mutual incoherence condition. In particular a result similar to
Corollary 2.2 but under the mutual incoherence condition can be found in [4]. Unfortunately the
mutual incoherence condition can only be satisfied with Ω(k̄2 ln d) random projections.

It is interesting to compare the new OMP result in this paper to that of Lasso, which is also
known to work under RIP. However, a more refined comparison illustrates differences between the
known theoretical results for these two methods. For OMP, the result in Theorem 2.1 can be applied
as long as the condition

s/|F̄ ∪ F (0)| ≥ 4|F̄ − F (0)|(ρ+(1)/ρ−(s)) ln(20ρ+(|F̄ − F (0)|)/ρ−(s))

is satisfied. With F (0) = ∅, this roughly requires (ρ+(1)/ρ−(s)) ln(ρ+(k̄)/ρ−(s)) to grow sub-linearly
as a function of s in order to apply the theory. In comparison, the known condition for Lasso (e.g.,
this has been made explicit in [10, 12]) requires ρ+(s)/ρ−(s) to grow sub-linearly as a function of
s. To compare the two conditions, we note that the condition for OMP is weaker in terms of of
the upper convexity constant as there is no explicit dependency on ρ+(s); however, the dependency
on ρ−(s) is stronger in OMP than Lasso due to the logarithmic term. Although it is unclear how
tight these conditions are, the comparison nevertheless indicates that even though both algorithms
work under RIP, there are still finer differences in their theoretical analysis: Lasso is slightly more
favorable in terms of its dependency on the lower strong convexity constant, while the OMP is more
favorable in terms of its dependency on the upper strong convexity constant. We further conjecture
that the extra logarithmic dependency ln(ρ+(k̄)/ρ−(s)) in OMP is necessary. In practice, it is known
that some times Lasso performs better while other times OMP performs better. Therefore some
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discrepancy in their theoretical analysis is expected. The theory in this paper significantly narrows
the previous theoretical gap between these two sparse recovery methods by positively answering the
open question of whether OMP can recovery sparse signals under RIP. Therefore our result allows
practitioners to apply OMP with more confidence than previously expected.
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A Technical Lemmas

We need a number of technical lemmas. Lemma A.3 and Lemma A.4, key to the proof, are based
on earlier work of the author with collaborators. The first three lemmas use the following notations.
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Let F, F̄ be two subsets of {1, . . . , d}. Let supp(x̄) ⊂ F̄ , and

x = arg min
z:supp(z)⊂F

Q(z).

Lemma A.1 We have

Q(x)−Q(x̄) ≤ 1.5ρ+(s)‖x̄F̄−F ‖22 + 0.5δs(x̄)2/ρ+(s)

for all s ≥ |F̄ − F |.

Proof Let x′ = x̄F̄∩F , then by definition of x, we know that Q(x) ≤ Q(x′). Therefore

Q(x)−Q(x̄) ≤Q(x′)−Q(x̄)

=Q(x′)−Q(x̄)−∇Q(x̄)>(x′ − x̄) +∇Q(x̄)>(x′ − x̄)

≤ρ+(s)‖x̄F̄−F ‖22 + δs(x̄)‖x̄F̄−F ‖2
≤ρ+(s)‖x̄F̄−F ‖22 + 0.5δs(x̄)2/ρ+(s) + 0.5ρ+(s)‖x̄F̄−F ‖22,

which implies the lemma.

Lemma A.2 We have:

ρ−(s)‖x− x̄‖22 ≤ 2 [Q(x)−Q(x̄)] + δs(x̄)2/ρ−(s)

for all s ≥ |F ∪ F̄ |.

Proof From

Q(x)−Q(x̄) =Q(x)−Q(x̄)−∇Q(x̄)>(x− x̄) +∇Q(x̄)>(x− x̄)

≥ρ−(s)‖x̄− x‖22 − δs(x̄)‖x̄− x‖2
≥0.5ρ−(s)‖x̄− x‖22 − 0.5δs(x̄)2/ρ−(s),

we obtain the desired inequality.

The next lemma shows that each greedy search makes reasonable progress. This proof is essential
identically to a similar result in [6] but with refined notations which is used in the current paper.
We thus include the proof for completeness. It allows the readers to verify more easily that the
proof in [6] remains unchanged with our new definitions.

Lemma A.3 Let ei ∈ Rd be the vector of zeros except for the i-th component being one. If F̄ −F 6=
∅, then for all s ≥ |F ∪ F̄ |:

min
α
Q(x + αej) ≤ Q(x)− ρ−(s)‖x− x̄‖2

ρ+(1)
(∑

i∈F̄−F |x̄i|
)2 (Q(x)−Q(x̄)),

where j = arg maxi |∇Q(x)i|.
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Proof For all j ∈ F̄ − F and η > 0, we define

Qj(η) = Q(x) + η sgn(x̄j)∇Q(x)j + η2 ρ+(1).

It follows from the definition of ρ+(1) that

Q(x + η sgn(x̄j) ej) ≤ Qj(η).

Since the choice of j = arg maxi |∇Q(x)i| achieves the minimum of mini minη Qi(η), the lemma is
a direct consequence of the following stronger statement:

min
i
Qi(η) ≤ Q(x)−

(
Q(x)−Q(x̄) + ρ−(s)‖x− xi‖2

)2
4ρ+(1)

(∑
i∈F̄−F |x̄i|

)2 , (3)

with an appropriate choice of η; this is because(
Q(x)−Q(x̄) + ρ−(s)‖x− xi‖2

)2 ≥ 4ρ−(s)(Q(x)−Q(x̄))‖x− xi‖2.

Therefore, we now turn to prove that (3) holds. Denote u =
∑

i∈F̄−F |x̄i|, we obtain that

u min
i
Qi(η) ≤

∑
i∈F̄−F

|x̄i|Qi(η) (4)

≤ uQ(x) + η
∑

i∈F̄−F

x̄i∇Q(x)i + u ρ+(1)η2.

Since we assume that x is optimal over F , we get that ∇Q(x)i = 0 for all i ∈ F . Additionally,
xi = 0 for i 6∈ F and x̄i = 0 for i 6∈ F̄ . Therefore,∑

i∈F̄−F

x̄i∇Q(x)i =
∑

i∈F̄−F

(x̄i − xi)∇Q(x)i

=
∑

i∈F̄∪F

(x̄i − xi)∇Q(x)i

= ∇Q(x)>(x̄− x) .

Combining the above with the definition of ρ−(s), we obtain that∑
i∈F̄−F

x̄i∇Q(x)i ≤ Q(x̄)−Q(x)− ρ−(s)‖x− x̄‖22 .

Combining the above with (4) we get

u min
i
Qi(η) ≤ uQ(x) + η [Q(x̄)−Q(x)− ρ−(s)‖x− x̄‖22] + u ρ+(1)η2.

Setting η = [Q(x)−Q(x̄) + ρ−(s)‖x− x̄‖22]/(2uρ+(1)) and rearranging the terms, we conclude our
proof of (3).

The direct consequence of the previous lemma is the following result, which is critical in our
analysis. The idea of using a nesting approximating sequence has appeared in [5], but the current
version is improved. The change is necessary for the purpose of this paper.
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Lemma A.4 Consider the OMP algorithm. Consider F̄1, F̄2, . . . , F̄L ⊂ F̄ ∪ F (0), and F̄0 = F̄ ∩
F (0). Assume that minx:supp(x)⊂F̄j

Q(x) ≤ Q(x̄) + qj, q0 ≥ q1 ≥ · · · ≥ qL ≥ 0, and let µ ≥
supj=1,...,L−1(qj−1/qj). If s ≥ |F (k) ∪ F̄ | and

k =

L∑
j=1

⌈
|F̄j − F (0)|(ρ+(1)/ρ−(s)) ln(2µ)

⌉
,

then
Q(x(k)) ≤ Q(x̄) + qL + µ−1qL−1.

Proof Note that for any supp(x) ⊂ F and supp(x̄) ⊂ F̄ , we have

ρ−(s)‖x− x̄‖2

ρ+(1)
(∑

i∈F̄−F |x̄i|
)2 ≥ ρ−(s)

ρ+(1)|F̄ − F |
.

Therefore Lemma A.3 implies that at any k such that s ≥ |F (k) ∪ F̄ | and ` = 0, . . . , L, we have

Q(x(k+1)) ≤ Q(x(k))− ρ−(s)

ρ+(1)|F̄` − F (k)|
max

(
0, Q(x(k))−Q(x̄)− q`

)
,

where we simply replace the target vector x̄ in Lemma A.3 by the optimal solution over F̄`, and
replace x by x(k). It implies that

max(0, Q(x(k+1))−Q(x̄)− q`) ≤
[
1− ρ−(s)

ρ+(1)|F̄` − F (k)|

]
max

(
0, Q(x(k))−Q(x̄)− q`

)
≤ exp

[
− ρ−(s)

ρ+(1)|F̄` − F (k)|

]
max

(
0, Q(x(k))−Q(x̄)− q`

)
.

Therefore for any k′ ≤ k and ` = 1, . . . , L, we have

Q(x(k))−Q(x̄)− q` ≤ exp

[
− ρ−(s)(k − k′)
ρ+(1)|F̄` − F (k′)|

]
max

(
0, Q(x(k′))−Q(x̄)− q`

)
. (5)

We are now ready to prove the lemma by induction on L. If L = 1, we can set k′ = 0 in (5).
Since

Q(x(0))−Q(x̄)− q1 ≤ q0,

we obtain that when
k =

⌈
|F̄1 − F (0)|(ρ+(1)/ρ−(s)) ln(2µ)

⌉
,

we have
Q(x(k))−Q(x̄)− q1 ≤ exp

[
− ρ−(s)k

ρ+(1)|F̄1 − F (0)|

]
q0 ≤ (2µ)−1q0.

Therefore the lemma holds. Now assume that the lemma holds at L = m−1 for some m > 1. That
is, with

k′ =
m−1∑
j=1

⌈
|F̄j − F (0)|(ρ+(1)/ρ−(s)) ln(2µ)

⌉
,
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we have
Q(x(k′)) ≤ Q(x̄) + qm−1 + µ−1qm−2.

This implies that when L = m:

Q(x(k′))−Q(x̄)− qL ≤ qL−1 + µ−1qL−2 − qL ≤ 2qL−1.

We thus obtain from (5) that

Q(x(k))−Q(x̄)− qL ≤ exp

[
− ρ−(s)(k − k′)
ρ+(1)|F̄L − F (0)|

]
(2qL−1) ≤ (2µ)−1(2qL−1).

This finishes the induction.

The following lemma is a slightly stronger version of the theorem, which we can prove more
easily by induction.

Lemma A.5 Consider the OMP algorithm. If there exist k and s such that |F̄ ∪ F (k)| ≤ s and

k =
⌈
4|F̄ − F (0)|(ρ+(1)/ρ−(s)) ln(20ρ+(|F̄ − F (0)|)/ρ−(s))

⌉
,

then
Q(x(k)) ≤ Q(x̄) + 2.5δs(x̄)2/ρ−(s). (6)

Proof We prove this result by induction on |F̄ − F (0)|. If |F̄ − F (0)| = 0, then the bound in (6)
holds trivially because Q(x(k)) ≤ Q(x(0)) ≤ Q(x̄).

Assume that the claim holds with |F̄ −F (0)| ≤ m−1 for some m > 0. Now we consider the case
of |F̄ −F (0)| = m. Without loss of generality, we assume for notational convenience that F̄ −F (0) =
{1, . . . ,m}, and |x̄j | in F̄ − F (0) is arranged in descending order so that |x̄1| ≥ |x̄2| ≥ · · · ≥ |x̄m|.
Let L be the smallest positive integer such that for all 1 ≤ ` < L, we have

m∑
i=2`−1

x̄2
i < µ

m∑
i=2`

x̄2
i ,

but
m∑

i=2L−1

x̄2
i ≥ µ

m∑
i=2L

x̄2
i , (7)

where µ = 10ρ+(m)/ρ−(s). We have L ≤ blog2mc+1 because the second inequality is automatically
satisfied when L = blog2mc+ 1 (the right hand side is zero in this case).

We can now define

F̄` = (F̄ ∩ F (0)) ∪ {i : 1 ≤ i ≤ min(m, 2` − 1)} (` = 0, 1, 2, . . . , L).

Lemma A.1 implies that for ` = 0, 1, . . . , L:

min
x⊂F̄`

Q(x) ≤ Q(x̄) + q`, q` = 1.5ρ+(m)
m∑
i=2`

x̄2
i + 0.5δs(x̄)2/ρ+(m).
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Moreover q`−1 ≤ µq` when ` = 1, . . . , L− 1. We can thus apply Lemma A.4 to conclude that when

k =
L∑
j=1

⌈
(2j − 1)(ρ+(1)/ρ−(s)) ln(2µ)

⌉
≤ 2L+1(ρ+(1)/ρ−(s)) ln(2µ)− 1, (8)

we have

Q(x(k))−Q(x̄) ≤1.5ρ+(m)
m∑

i=2L

x̄2
i + 1.5µ−1ρ+(m)

m∑
i=2L−1

x̄2
i + 0.5(1 + µ−1)δs(x̄)2/ρ+(m)

≤3µ−1ρ+(m)
m∑

i=2L−1

x̄2
i + 0.5(1 + µ−1)δs(x̄)2/ρ+(m),

where (7) is used to derive the second inequality.
Now, if 2µ−1ρ+(m)

∑m
i=2L−1 x̄2

i ≤ (1 +µ−1)δs(x̄)2/ρ−(s), then the above inequality implies that
(6) holds automatically, which finishes the induction. Therefore in the following, we only consider
the case this is not true. That is,

2µ−1ρ+(m)
m∑

i=2L−1

x̄2
i > (1 + µ−1)δs(x̄)2/ρ−(s).

Now Lemma A.2 implies that

ρ−(s)‖x(k) − x̄‖22 ≤2(Q(x(k))−Q(x̄)) + δs(x̄)2/ρ−(s)

≤6µ−1ρ+(m)
m∑

i=2L−1

x̄2
i + (2 + µ−1)δs(x̄)2/ρ−(s)

<10µ−1ρ+(m)
m∑

i=2L−1

x̄2
i = ρ−(s)

m∑
i=2L−1

x̄2
i .

It implies that
m∑

i=m−|F̄−F (k)|+1

x̄2
i ≤

∑
i∈F̄−F (k)

x̄2
i ≤ ‖x(k) − x̄‖22 <

m∑
i=2L−1

x̄2
i .

Therefore m− |F̄ −F (k)|+ 1 > 2L−1. That is, |F̄ −F (k)| ≤ m− 2L−1. It follows from the induction
hypothesis that after another

d4(m− 2L−1)(ρ+(1)/ρ−(s)) ln(2µ)e

OMP iterations, (6) holds. Therefore by combining this estimate with (8), we know that the total
number of OMP iterations for (6) to hold (starting with F (0)) is no more than

d4(m− 2L−1)(ρ+(1)/ρ−(s)) ln(2µ)e+ 2L+1(ρ+(1)/ρ−(s)) ln(2µ)− 1

≤d4m(ρ+(1)/ρ−(s)) ln(2µ)e.

This finishes the induction step for the case |F̄ − F (0)| = m.
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